PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

First-order transition with power-law singularity in models with absorbing states
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We study one- and two-dimensional models which undergo a transition between active and absorbing
phases. The transition point in these models is of a novel type: jump of the order parameter coincides with its
power-law singularity. Some arguments supported by Monte Carlo simulations prompted us to predict the
exact location of the transition point. Both models possess gaugelike symmetry.
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[. INTRODUCTION ments, supported by Monte Carlo simulations, prompted us
to predict the exact location of the transition point in both
Recently, nonequilibrium phase transitions have been inmodels, namelyr .= 0. Both models have a gaugelike sym-
tensively studied in a variety of modef4]. In addition to ~ metry, which might be responsible for the unusual behavior
some potential applications, the motivation to study thes@®f these models.
transitions comes from the belief that they can be categorized

intp universality classes similarly to equili_br_ium ph_ase tran- Il. SQUARE LATTICE
sitions. In this context, models which exhibit transitions be- ) _ ) - )
tween active and absorbing phagé}sare of particu|ar inter- Our first model is a certain modification of a model intro-

est. There already exists substantial numerical evidence thdticed in the context of modeling biological evolution
phase transitions in such models indeed can be classified intd0,11. It is defined on a two-dimensionati&2) square
some universality classes. For example, it is believed thagttice where for each bond between the nearest-neighboring
models with unique absorbing states should belong to théitesi andj we introduce bond variables; ; € (—0.5,0.5).
so-called directed-percolatiofDP) universality class[3].  Introducing the parameter, we call the sitei active when
Moreover, models with doublesymmetrig absorbing states [Ijw; ;<r, wherej runs over all nearest neighborsiofOth-
or with some conservation law in their dynamics belong to€rwise, the site is called nonactive. The model is driven by
another universality clagd]. random sequential dynamics, and when the activeisite

Similarly to equilibrium systems, nonequilibrium continu- selected, we assign anew, with uniform probability, four
ous phase transitions are not the only possibility—soméond variablesv; ;, wherej is one of the nearest neighbors
models are known to undergo discontinuous transition®f i. Nonactive sites are not updated, but updating a certain
[5—7]. Although such transitions are not classified into uni-(active site might change the status of its neighbors.
versality classes, they might be more relevant since discon- An important quantity characterizing this model is the
tinuous transitions are, at present, the only type of transitionsteady-state density of active sitps How doesp change
which can be observed experimentally. On the contrary, thavith the control parameter? Of course, forr=(0.5)"
experimental realization of continuous phase transitions stilF0.0625, all sites are activepE 1) for any distribution of
remains an open problef8]. bond variablesw; ;. It is natural to expect that for

One reason for a relatively good understanding of equi<<0.0625 and not too small there will be a certain fraction of
librium phase transitions is a wealth of exactly solvable mod-active sites p>0) and this fraction will decrease when
els in this field[9]. In this respect, the situation is much decreases. Since the dynamical rules imply that the model
worse for nonequilibrium phase transitions. None of thehas absorbing states with all sites nonactipe-Q), one can
models with absorbing states and with continuous or disconexpect that at a certain the model undergoes a transition
tinuous transitions was solved exactly and all results conbetween the active and absorbing phases. In general, one
cerning the critical exponents or the location of a transitionexpects that this transition might be either continuous and
point are only numerical. presumably of(2+1)DP universality clas§12] or discon-

In the present paper we study certain models with infi-tinuous.
nitely many absorbing states. At a certain value of a control The existence of a transition is confirmed in Fig. 1, which
parameter =r, these models undergo a transition betweershows the density as a function of obtained using Monte
active and absorbing phases. But the interesting point is &arlo simulations. The simulations were performed for the
novel type of this transition: it seems to combine some fealinear system sizé =300 and we checked that the presented
tures of both discontinuous and continuous transitionsresults are, within small statistical error, size-independent.
Namely, atr =r an order parameter jumps discontinuously After relaxing the random initial configuration foy,= 10",
to zero, but in addition to that the order parameter has ave made measurements during runstefl®® (the unit of
power-law singularity upon approaching the transition pointtime is defined as a single on average update/lattice. site
from the active phase. Moreover, some elementary argu-rom this figure one can also see that the transition pqint

is located very close to=0 and in the following we are
going to show that it is very likely that in this model=0
*Email address: lipowski@main.amu.edu.pl (exactly.
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FIG. 1. The steady-state density of active sjiess a function of FIG. 2. The time evolution of the density of active sijet)
r for thed=1 (O) andd=2 (®) models. The simulations were (d=2 andL=100). Forr=0 the system remains in the active
made for the system size=300 (d=2) and up toL=3x 10° (d phase, but as soon asbecomes negative it evolves toward an
=1). Forr<0, the system quickly reaches an absorbing sste ~ aPsorbing state. Far=0 andL =300, the simulations give, within
Fig. 2. The error bars are smaller than the plotted symbols. Themall statistical errors, the same results.

inset shows our data in the vicinity of=0. Forr>10"3, the den- i o o
sity p for both models is almost the same. presented in the logarithmic plot in Fig. 3. The parameter

po=0.359(i.e., the density of active sites foe=0) in Fig. 3
First, we show that for<0, the model is in the absorbing was obtained from the least-square analysis of sméH-
phase. The argument for that is elementary and based on tie10 3) data shown in Fig. 1 using the formula
following observation: forr <0, there exists a finite prob-
ability that after updating, a given site will become nonactive p(r)=po+ArP, (2
forever. Indeed, when one of the newly selected bonds sat-
isfies the condition where we assumed that the critical point is located=ad
[14]. From the slope of the data in Fig. 3, we estimg@e
lw; j|<—-r/(0.57, () =0.591), which might suggest that the exponghfor that
model is the same as in ti@+1)DP [13,14]. However, a

then trl‘e sitisihandrjl become pem;lanenth;l nonapti\(beh, characteristic feature of models of the DP universality class
regardless of the other bonds attached to these sites, they Will y,a¢ 4t the transition point the model falls into an absorbing
always remain nonactiyeFor r<0, there is a finite prob-

ability to satisfy Eq(1), and the above mechanism leads to a
rapid decrease of active sites and hence the system reaches
an absorbing state. The above mechanism is not effective for
r=0 since there is no value which would ensure permanent
nonactivity of a certain site.

To confirm that forr <O the system is in the absorbing
phase, we present in Fig. 2 the time evolutionpofor r =
—10 % and—10"7. Although these values are very close to
r=0, one can clearly see that the system evolves toward the
absorbing state(For r smaller than these values, the ap-
proach to the absorbing state would be even fgstes.we
have already mentioned, foe0 the mechanism which gen-
erates permanently nonactive sites is not effective. Most
likely, this has important consequences: as shown in Fig. 2,
even forr =0 the system does not evolve toward the absorb-
ing state but remains in the active phase.

These results indicate thatiat 0 the model undergoes a
first-order transition between active and absorbing phases,
characterized by a discontinuity of the order parameter |Qg10(r)

However, the most interesting feature of the model is the fact

that upon approaching the first-order transition paistO, FIG. 3. The plot of logy(p— po) as a function of logy(r) with
the order parameter exhibits a power-law singularity. Suclp,=0.359 d=2,00) and p,=0.314827 =1,0). The lines
singularities usually signal a continuous transition. This Sin-have slopes corresponding $6=0.58 d=2) and 8=0.66 (d
gularity, which is already visible in the inset of Fig. 1, is also =1).
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FIG. 4. The triangular ladder. When three bon@s) (around a 1.5
certain triangle are inverted, activity of the system remains un-
changed.

l0g4(7)

state. Our model at the transition poimt=<{0) is not in the 1.0 1

absorbing phasdésee Fig. 2, but it enters the absorbing

phase as soon asbecomes negative. In addition, scaling

behavior of our numerical data persists on a relatively small 05 -
interval of r, and asymptotically a different behavior might

set in. Further arguments against DP criticality of this model

are presented in the next section. g °
Let us notice that the above model is characterized by 0.0 | . . .
very large gaugelike symmetry. Indeed, inverting)(four 1 2 3 4 5 6
bond variables around any elementary square does not Iog (L)
change the activity of the sites. The gauge symmetry was 10
examined for many equilibrium lattice mode]$5]. How- FIG. 5. The size dependence of the relaxation tirrfer the d

ever, the models examined so far with absorbing states do 1 model andr=0 (O) and 102 (0). The straight line has a
not possess this kind of symmetry. It would be interesting tasjope 0.3.
check whether the unusual properties of this model are re-
lated with this symmetry. In the following, we examine a With a small exponert(~0.2), but positive curvature of our
one-dimensional model which possesses a similar symmetrglata might asymptotically lead @=0. On the other hand,
even if z=0, it is not certain whethet remains finite or
IIl. TRIANGULAR LADDER diverg_es, _but is slower _than a power_bf_ Forr>0 (i.e_.,
off-criticality), the numerical data are similar tea=0, but in
Let us examine a model defined on a one-dimensionajeneral one expects thatremains finite in the thermody-
(d=1) ladderlike lattice, where each site also has foumamic limit.
neighborgsee Fig. 4. When defined with the same dynami-

cal rules as the model examined in the preceding section, this IV. SUMMARY
d=1 model also has an analogous gauge symnisag Fig. . . -
4. ¢ gauge symmisey Fig In the present paper we studied two models which exhibit

We examined the properties of this model using the sam&emarkably similar and unusual behavior. These models have

Monte Carlo method. Results of our simulations for the@ trans_ition point which, although mainly of discontinu_ous
steady-state densify are shown in Fig. 1 and Fig. 3. As js Nature(ump of the order parameter aze-0), has a certain

usually the case in models with absorbing states, Montdeature of continuous transitioripower-law singularity of

Carlo simulations of thel=1 version are much more accu- (€ order parameter ,
rate. For example, close to and at the transition ppind The main weakness of our paper is the lack of any theo-

we simulated the system of the site=3x1CP, and the retical argument which would explain the behavior of these
simulation time was typicallf=1. As a resulf, we were models. Both models POSSESS certain gaugehke _symmetry.
able to probe a much closer vicinity of the transition point. The role of such symmetry n mode_ls with absorbing ;tates
Our results indicate that the behavioraft1 andd=2 was not yet exp_Iored and it is pqssmlg that the behavior of
versions of this model is very similar. Both models exhibit these models mlght 'be related with this symmetry. .
qualitatively the same transition at=0. In thed=1 case Are there any indications that such transitions might take
our estimations of the critical parameters age=0.314 827’ place in real systems? In our opinion, one of the possible

and =0.663). A relatively good scaling behavior in this applications might be related with phase transitions in
case is c;onfirrﬁed over two decad@ee Fig. 3 The ob- nuclear physics. Indeed, there are some indications that mul-

. tifragmentation of heavy nuclei resembles a phase transition
Eﬁ:ntii \ggs 8:: gh::()j(ig:)gfgf) (;:zlag)]g?)(()CIZU7d6e4SE;[2[e]_6D];3 value which has both first- and second-order featur&g]. Such
To get further insight into the natl.Jre of the trénsition systems have been already r_nod_el_ed using Ising-like moo_lels.
point, we examined the size dependence of the reIaxatioHowever’ such an approac_:h |mpI|C|tIy assumes a thermahza-
time;- We measured the time needed for the system startin{Ilon of _the system, which is not o_bwous n t.hese mqufrag-
: T . . fhentation processes. Models with absorbing states might
from the random initial configuration to reach the steady

state. Typically, at the continuous transitiemliverges as.?, provide an alterative description of such processes.
where z is a positive exponent. For the one- and two-
dimensional DPz=1.58 and 1.76, respectively. At the dis-
continuous transition one expects thatemains finite in the | thank Professor Des Johnston for his hospitality and the
thermodynamic limiti.e.,z=0). Forr=0 andd=1, results  Department of Mathematics of the Heriot-Watt University
of our measurements, shown in Fig. 5, are, in our opinion(Edinburgh, Scotlandfor allocating computer time. | also
inconclusive. They may suggest a power-law divergencehank H. Hinrichsen for interesting discussion.
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