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First-order transition with power-law singularity in models with absorbing states

Adam Lipowski*
Department of Physics, Adam Mickiewicz University, ulica Umultowska 85, 61-614 Poznan´, Poland

~Received 8 May 2000!

We study one- and two-dimensional models which undergo a transition between active and absorbing
phases. The transition point in these models is of a novel type: jump of the order parameter coincides with its
power-law singularity. Some arguments supported by Monte Carlo simulations prompted us to predict the
exact location of the transition point. Both models possess gaugelike symmetry.

PACS number~s!: 64.60.2i, 05.70.Ln
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I. INTRODUCTION

Recently, nonequilibrium phase transitions have been
tensively studied in a variety of models@1#. In addition to
some potential applications, the motivation to study th
transitions comes from the belief that they can be categor
into universality classes similarly to equilibrium phase tra
sitions. In this context, models which exhibit transitions b
tween active and absorbing phases@2# are of particular inter-
est. There already exists substantial numerical evidence
phase transitions in such models indeed can be classified
some universality classes. For example, it is believed
models with unique absorbing states should belong to
so-called directed-percolation~DP! universality class@3#.
Moreover, models with double~symmetric! absorbing states
or with some conservation law in their dynamics belong
another universality class@4#.

Similarly to equilibrium systems, nonequilibrium continu
ous phase transitions are not the only possibility—so
models are known to undergo discontinuous transiti
@5–7#. Although such transitions are not classified into u
versality classes, they might be more relevant since disc
tinuous transitions are, at present, the only type of transiti
which can be observed experimentally. On the contrary,
experimental realization of continuous phase transitions
remains an open problem@8#.

One reason for a relatively good understanding of eq
librium phase transitions is a wealth of exactly solvable m
els in this field @9#. In this respect, the situation is muc
worse for nonequilibrium phase transitions. None of t
models with absorbing states and with continuous or disc
tinuous transitions was solved exactly and all results c
cerning the critical exponents or the location of a transit
point are only numerical.

In the present paper we study certain models with in
nitely many absorbing states. At a certain value of a con
parameterr 5r c , these models undergo a transition betwe
active and absorbing phases. But the interesting point
novel type of this transition: it seems to combine some f
tures of both discontinuous and continuous transitio
Namely, atr 5r c an order parameter jumps discontinuous
to zero, but in addition to that the order parameter ha
power-law singularity upon approaching the transition po
from the active phase. Moreover, some elementary a
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ments, supported by Monte Carlo simulations, prompted
to predict the exact location of the transition point in bo
models, namely,r c50. Both models have a gaugelike sym
metry, which might be responsible for the unusual behav
of these models.

II. SQUARE LATTICE

Our first model is a certain modification of a model intr
duced in the context of modeling biological evolutio
@10,11#. It is defined on a two-dimensional (d52) square
lattice where for each bond between the nearest-neighbo
sites i and j we introduce bond variableswi , jP(20.5,0.5).
Introducing the parameterr, we call the sitei active when
) jwi , j,r , wherej runs over all nearest neighbors ofi. Oth-
erwise, the site is called nonactive. The model is driven
random sequential dynamics, and when the active sitei is
selected, we assign anew, with uniform probability, fo
bond variableswi , j , wherej is one of the nearest neighbo
of i. Nonactive sites are not updated, but updating a cer
~active! site might change the status of its neighbors.

An important quantity characterizing this model is th
steady-state density of active sitesr. How doesr change
with the control parameterr? Of course, forr>(0.5)4

50.0625, all sites are active (r51) for any distribution of
bond variableswi , j . It is natural to expect that forr
,0.0625 and not too small there will be a certain fraction
active sites (r.0) and this fraction will decrease whenr
decreases. Since the dynamical rules imply that the mo
has absorbing states with all sites nonactive (r50), one can
expect that at a certainr the model undergoes a transitio
between the active and absorbing phases. In general,
expects that this transition might be either continuous a
presumably of~211!DP universality class@12# or discon-
tinuous.

The existence of a transition is confirmed in Fig. 1, whi
shows the densityr as a function ofr obtained using Monte
Carlo simulations. The simulations were performed for t
linear system sizeL5300 and we checked that the present
results are, within small statistical error, size-independe
After relaxing the random initial configuration fort rel5104,
we made measurements during runs oft5105 ~the unit of
time is defined as a single on average update/lattice s!.
From this figure one can also see that the transition poinr c
is located very close tor 50 and in the following we are
going to show that it is very likely that in this modelr c50
~exactly!.
4401 ©2000 The American Physical Society
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First, we show that forr ,0, the model is in the absorbin
phase. The argument for that is elementary and based o
following observation: forr ,0, there exists a finite prob
ability that after updating, a given site will become nonact
forever. Indeed, when one of the newly selected bonds
isfies the condition

uwi , j u,2r /~0.5!3, ~1!

then the sitesi and j become permanently nonactive~i.e.,
regardless of the other bonds attached to these sites, they
always remain nonactive!. For r ,0, there is a finite prob-
ability to satisfy Eq.~1!, and the above mechanism leads to
rapid decrease of active sites and hence the system rea
an absorbing state. The above mechanism is not effective
r>0 since there is no value which would ensure perman
nonactivity of a certain site.

To confirm that forr ,0 the system is in the absorbin
phase, we present in Fig. 2 the time evolution ofr for r 5
21026 and21027. Although these values are very close
r 50, one can clearly see that the system evolves toward
absorbing state.~For r smaller than these values, the a
proach to the absorbing state would be even faster.! As we
have already mentioned, forr>0 the mechanism which gen
erates permanently nonactive sites is not effective. M
likely, this has important consequences: as shown in Fig
even forr 50 the system does not evolve toward the abso
ing state but remains in the active phase.

These results indicate that atr 50 the model undergoes
first-order transition between active and absorbing pha
characterized by a discontinuity of the order parameterr.
However, the most interesting feature of the model is the
that upon approaching the first-order transition pointr 50,
the order parameter exhibits a power-law singularity. Su
singularities usually signal a continuous transition. This s
gularity, which is already visible in the inset of Fig. 1, is al

FIG. 1. The steady-state density of active sitesr as a function of
r for the d51 (s) and d52 (d) models. The simulations wer
made for the system sizeL5300 (d52) and up toL533105 (d
51). For r ,0, the system quickly reaches an absorbing state~see
Fig. 2!. The error bars are smaller than the plotted symbols.
inset shows our data in the vicinity ofr 50. For r .1023, the den-
sity r for both models is almost the same.
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presented in the logarithmic plot in Fig. 3. The parame
r050.359~i.e., the density of active sites forr 50) in Fig. 3
was obtained from the least-square analysis of small-r (r
<1023) data shown in Fig. 1 using the formula

r~r !5r01Arb, ~2!

where we assumed that the critical point is located atr 50
@14#. From the slope of the data in Fig. 3, we estimateb
50.58(1), which might suggest that the exponentb for that
model is the same as in the~211!DP @13,14#. However, a
characteristic feature of models of the DP universality cl
is that at the transition point the model falls into an absorb

e

FIG. 2. The time evolution of the density of active sitesr(t)
(d52 and L5100). For r 50 the system remains in the activ
phase, but as soon asr becomes negative it evolves toward a
absorbing state. Forr 50 andL5300, the simulations give, within
small statistical errors, the same results.

FIG. 3. The plot of log10(r2r0) as a function of log10(r ) with
p050.359 (d52, h) and p050.314 827 (d51, s). The lines
have slopes corresponding tob50.58 (d52) and b50.66 (d
51).
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state. Our model at the transition point (r 50) is not in the
absorbing phase~see Fig. 2!, but it enters the absorbin
phase as soon asr becomes negative. In addition, scalin
behavior of our numerical data persists on a relatively sm
interval of r, and asymptotically a different behavior mig
set in. Further arguments against DP criticality of this mo
are presented in the next section.

Let us notice that the above model is characterized
very large gaugelike symmetry. Indeed, inverting (6) four
bond variables around any elementary square does
change the activity of the sites. The gauge symmetry w
examined for many equilibrium lattice models@15#. How-
ever, the models examined so far with absorbing states
not possess this kind of symmetry. It would be interesting
check whether the unusual properties of this model are
lated with this symmetry. In the following, we examine
one-dimensional model which possesses a similar symm

III. TRIANGULAR LADDER

Let us examine a model defined on a one-dimensio
(d51) ladderlike lattice, where each site also has fo
neighbors~see Fig. 4!. When defined with the same dynam
cal rules as the model examined in the preceding section,
d51 model also has an analogous gauge symmetry~see Fig.
4!.

We examined the properties of this model using the sa
Monte Carlo method. Results of our simulations for t
steady-state densityr are shown in Fig. 1 and Fig. 3. As i
usually the case in models with absorbing states, Mo
Carlo simulations of thed51 version are much more accu
rate. For example, close to and at the transition pointr 50
we simulated the system of the sizeL533105, and the
simulation time was typicallyt5106. As a result, we were
able to probe a much closer vicinity of the transition poin

Our results indicate that the behavior ofd51 andd52
versions of this model is very similar. Both models exhi
qualitatively the same transition atr 50. In thed51 case,
our estimations of the critical parameters arer050.314 827
and b50.66(3). A relatively good scaling behavior in thi
case is confirmed over two decades~see Fig. 3!. The ob-
tained value of the exponentb clearly excludes the DP valu
~in the case of one-dimensional DPb50.276 486@16#!.

To get further insight into the nature of the transitio
point, we examined the size dependence of the relaxa
time t. We measured the time needed for the system star
from the random initial configuration to reach the stea
state. Typically, at the continuous transitiont diverges asLz,
where z is a positive exponent. For the one- and tw
dimensional DP,z51.58 and 1.76, respectively. At the di
continuous transition one expects thatt remains finite in the
thermodynamic limit~i.e., z50). Forr 50 andd51, results
of our measurements, shown in Fig. 5, are, in our opini
inconclusive. They may suggest a power-law diverge

FIG. 4. The triangular ladder. When three bonds (d) around a
certain triangle are inverted, activity of the system remains
changed.
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with a small exponentz(;0.2), but positive curvature of ou
data might asymptotically lead toz50. On the other hand
even if z50, it is not certain whethert remains finite or
diverges, but is slower than a power ofL. For r .0 ~i.e.,
off-criticality!, the numerical data are similar tor 50, but in
general one expects thatt remains finite in the thermody
namic limit.

IV. SUMMARY

In the present paper we studied two models which exh
remarkably similar and unusual behavior. These models h
a transition point which, although mainly of discontinuo
nature~jump of the order parameter andz50), has a certain
feature of continuous transitions~power-law singularity of
the order parameter!.

The main weakness of our paper is the lack of any th
retical argument which would explain the behavior of the
models. Both models possess certain gaugelike symm
The role of such symmetry in models with absorbing sta
was not yet explored and it is possible that the behavior
these models might be related with this symmetry.

Are there any indications that such transitions might ta
place in real systems? In our opinion, one of the poss
applications might be related with phase transitions
nuclear physics. Indeed, there are some indications that m
tifragmentation of heavy nuclei resembles a phase transi
which has both first- and second-order features@17#. Such
systems have been already modeled using Ising-like mod
However, such an approach implicitly assumes a thermal
tion of the system, which is not obvious in these multifra
mentation processes. Models with absorbing states m
provide an alternative description of such processes.
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FIG. 5. The size dependence of the relaxation timet for the d
51 model andr 50 (s) and 1023 (h). The straight line has a
slope 0.3.
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